top of page
Research

Our research is focussed on light-solid interactions. We  are interested in optical excitations in semiconductor and metal nanostructures (1-5), and we use photoemission electron microscopy (PEEM) for the direct observation of photon and  plasmon surface dynamics  (6-8). 

​

In the past decade we have designed and built a unique aberration-correction microscope (PEEM) (9-11) and equipped it with a femtosecond laser system, a delay stage and a pulse shaper. This system allows us to directly visualize light propagation at the scale of a few nanometers. 

​

We have used this instrument to study a number of optical devices such as optical antennas (12), plasmonic routers (13), plasmonic optical filters (13), plasmonic positioners (14), photonic waveguides and, most recently, photonic crystals (5). 

 

These devices and structures will open applications in the area of optical signal processing on nanometer scales. Other potential applications would be sensors, harmonics generators, electron emitters etc. 

​

Currently our group  works towards the active control of light. We hope to demonstrate optical control with nanostructures positioned in the microscope.  To prepare and characterize sample structures we use Focused Ion Beams, SEM, TEM.  

 

In most of our work we also use numerical calculations to compare experimental results with physical theory  (5, 10, 12-14). 

​

(1) Light propagation and interaction observed with electrons

RC Word, JPS Fitzgerald, R Könenkamp

Ultramicroscopy 160, 84-89 (2016)

(2)Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM

RC Word, JPS Fitzgerald, R Könenkamp

Optics Express 21 (25), 30507-30520 (2013)

(3)  Photonic near-field imaging in multiphoton photoemission electron microscopy

JPS Fitzgerald, RC Word, SD Saliba, R Könenkamp

Physical Review B 87 (20), 205419 (2013)

(4) Electron emission in the near-field of surface plasmons

RC Word, JPS Fitzgerald, R Könenkamp

Surface Science 607, 148-152 (2013)

5)  Photonic crystal characterization based on photoemission electron microscopy

Theodore Stenmark and Rolf Könenkamp

Physical Review B  99, 205428 (2019)

(6) Direct imaging of optical diffraction in photoemission electron microscopy

RC Word, JPS Fitzgerald, R Könenkamp

Applied Physics Letters 103 (2), 021118 (2013)

(7) Confined photonic mode propagation observed in photoemission electron microscopy

            T Stenmark, RC Word, R Könenkamp

            Ultramicroscopy 183, 38-42

(8) 5.4 nm spatial resolution in biological photoemission electron microscopy

R Könenkamp, RC Word, GF Rempfer, T Dixon, L Almaraz, T Jones

Ultramicroscopy 110 (7), 899-902 (2010)

(9)  Adaptive aberration correction using a triode hyperbolic electron mirror

JPS Fitzgerald, RC Word, R Könenkamp

Ultramicroscopy 111 (9), 1495-1503 (2011)

(10)Simultaneous and independent adaptive correction of spherical and chromatic aberration using an electron mirror and lens combination

JPS Fitzgerald, RC Word, R Könenkamp

Ultramicroscopy 115, 35-40 (2012)

(11) Mode structure of planar optical antennas on dielectric substrates

RC Word, R Könenkamp

Optics Express 24 (16), 18727-18738 (2016)

(12)  Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures

R Könenkamp, RC Word, JPS Fitzgerald, A Nadarajah, SD Saliba

Applied Physics Letters 101 (14), 141114 (2012)

(13) Photoelectron emission control with polarized light in plasmonic metal random structures

RC Word, J Fitzgerald, R Könenkamp

Applied Physics Letters 99 (4), 041106 (2011)

(14)  Positional control of plasmonic fields and electron emission

RC Word, JPS Fitzgerald, R Könenkamp

Applied Physics Letters 105 (11), 111114 (2014)

bottom of page